By Topic

CAN: chain of nodes approach to direct rule induction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
A. M. Kabakcioglu ; Dept. of Electr. Eng., Univ. de Los Andes, Merida, Venezuela

CAN is a heuristic algorithm that employs an information theoretic measure to learn rules. CAN approach distinguishes itself from other approaches by being direct, meaning that there are no intermediate representations, an induced rule is never altered in later stages and only tests that appear in the final solution are generated. In the selection of rule conditions (tests) existing rule induction algorithms do not provide a satisfactory answer to the partitioning of the feature space of discrete feature variables with nonordered qualitative values (i.e., categorical attributes) for multiclass problems. Existing algorithms have exponential complexity in N, where N is the number of feature values. Therefore, heuristic algorithms are employed at this step. An important contribution of this paper is to show that in test selection within CAN framework optimal partitions are achieved in linear time in N for the multiclass case

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:29 ,  Issue: 6 )