Cart (Loading....) | Create Account
Close category search window
 

A reinforcement neuro-fuzzy combiner for multiobjective control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chin-Teng Lin ; Dept. of Electr. & Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; I-Fang Chung

This paper proposes a neuro-fuzzy combiner (NFC) with reinforcement learning capability for solving multiobjective control problems. The proposed NFC can combine n existing low-level controllers in a hierarchical way to form a multiobjective fuzzy controller. It is assumed that each low-level (fuzzy or nonfuzzy) controller has been well designed to serve a particular objective. The role of the NFC is to fuse the n actions decided by the n low-level controllers and determine a proper action acting on the environment (plant) at each time step. Hence, the NFC can combine low-level controllers and achieve multiple objectives (goals) at once. The NFC acts like a switch that chooses a proper action from the actions of low-level controllers according to the feedback information from the environment. In fact, the NFC is a soft switch; it allows more than one low-level actions to be active with different degrees through fuzzy combination at each time step. An NFC can be designed by the trial-and-error approach if enough a priori knowledge is available, or it can be obtained by supervised learning if precise input/output training data are available. In the more practical cases when there is no instructive teaching information available, the NFC can learn by itself using the proposed reinforcement learning scheme. Adopted with reinforcement learning capability, the NFC can learn to achieve desired multiobjectives simultaneously through the rough reinforcement feedback from the environment, which contains only critic information such as “success (good)” or “failure (bad)” for each desired objective. Computer simulations have been conducted to illustrate the performance and applicability of the proposed architecture and learning scheme

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:29 ,  Issue: 6 )

Date of Publication:

Dec 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.