By Topic

Constrained iterative speech enhancement with application to speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. H. L. Hansen ; Sch. of Electr. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; M. A. Clements

The basis of an improved form of iterative speech enhancement for single-channel inputs is sequential maximum a posteriori estimation of the speech waveform and its all-pole parameters, followed by imposition of constraints upon the sequence of speech spectra. The approaches impose intraframe and interframe constraints on the input speech signal. Properties of the line spectral pair representation of speech allow for an efficient and direct procedure for application of many of the constraint requirements. Substantial improvement over the unconstrained method is observed in a variety of domains. Informed listener quality evaluation tests and objective speech quality measures demonstrate the technique's effectiveness for additive white Gaussian noise. A consistent terminating point of the iterative technique is shown. The current systems result in substantially improved speech quality and linear predictive coding (LPC) parameter estimation with only a minor increase in computational requirements. The algorithms are evaluated with respect to improving automatic recognition of speech in the presence of additive noise and shown to outperform other enhancement methods in this application

Published in:

IEEE Transactions on Signal Processing  (Volume:39 ,  Issue: 4 )