By Topic

Frequency component selection for an EEG-based brain to computer interface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Pregenzer ; Dept. of Med. Inf., Graz Univ., Austria ; G. Pfurtscheller

A new communication channel for severely handicapped people could be opened with a direct brain to computer interface (BCI). Such a system classifies electrical brain signals online. In a series of training sessions, where electroencephalograph (EEG) signals are recorded on the intact scalp, a classifier is trained to discriminate a limited number of different brain states. In a subsequent series of feedback sessions, where the subject is confronted with the classification results, the subject tries to reduce the number of misclassifications. In this study the relevance of different spectral components is analyzed: (1) on the training sessions to select optimal frequency bands for the feedback sessions and (2) on the feedback sessions to monitor changes

Published in:

IEEE Transactions on Rehabilitation Engineering  (Volume:7 ,  Issue: 4 )