By Topic

Theoretical study of steady-state temperature rise within the eye due to ultrasound insonation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Herman, B.A. ; Center for Devices & Radiol. Health, Food and Drug Adm., Rockville, MD, USA ; Harris, G.R.

The soft tissue thermal index (TIS), as defined in the AIUM/NEMA Output Display Standard, may not be relevant with respect to eye exposure, primarily because of differences in actual vs. assumed acoustic and thermal properties. Therefore, a theoretical study of temperature rise within the eye due to ultrasound insonation was undertaken to compare the TIS with more exact calculations. At each plane in the direction of propagation, the focused ultrasound beam was modeled as a disc of uniform intensity. Each disc becomes a heat source, and integration over all discs provides the total temperature rise at any axial position. Calculations were done assuming the ultrasound beam intersects the lens of the eye as well as for the case in which the beam does not intersect the lens. Results were found for frequencies of 7.0 MHZ to 40 MHZ, transducer diameters of 0.2 cm to 1.0 cm, and focal lengths ranging from 0.2 cm to 3.0 cm. Perfusion was assumed negligible and thermal and acoustic parameters were taken from reported studies. For every case, the ratio of maximum temperature rise to the TIS (assuming constant output power) was calculated. For the lens case, the ratio varied from 7.35 to 0.8. For the no-lens case, the ratio varied from 4.1 to 0.4. These results indicate that the TIS is not adequate to represent the temperature rise occurring within the eye upon insonation.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:46 ,  Issue: 6 )