By Topic

Acoustic wave-based sensors using mode conversion in periodic gratings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
F. Bender ; Angewandte Phys. Chem., Heidelberg Univ., Germany ; R. Dahint ; F. Josse

Using periodic gratings etched into the surface of a piezoelectric plate, surface acoustic waves (SAW) can be converted into bulk waves and vice versa with high efficiency. If parallel grating structures are fabricated on opposite surfaces of a piezoelectric plate, a SAW also can be directed from one surface to the other. Using such structures, acoustic wave-based sensors can be designed that utilize SAW for the detection of chemical analytes on an electrode-free surface, i.e., the back surface. As a result, spurious sensor response and electrode aging that may occur when a chemical analyte comes in contact with the transducers are minimized. The design principles of these grating-based SAW sensors are explained, and the mass sensitivity is investigated using chemical vapor deposited thin polymer films, a type of material used in many practical chemical sensor applications. Experimental results are presented for the detection of nitrogen dioxide (NO/sub 2/) in sub-ppm concentrations.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:46 ,  Issue: 6 )