By Topic

On the application of mixture AR hidden Markov models to text independent speaker recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tisby, N.Z. ; AT&T Bell Lab., Murray Hill, NJ

Linear predictive hidden Markov models have proved to be efficient for statistically modeling speech signals. The possible application of such models to statistical characterization of the speaker himself is described and evaluated. The results show that even with a short sequence of only four isolated digits, a speaker can be verified with an average equal-error rate of less than 3 %. These results are slightly better than the results obtained using speaker-dependent vector quantizers, with comparable numbers of spectral vectors. The small improvement over the vector quantization approach indicates the weakness of the Markovian transition probabilities for characterizing speaker-dependent transitional information

Published in:

Signal Processing, IEEE Transactions on  (Volume:39 ,  Issue: 3 )