By Topic

Feedback cancellation in hearing aids: results from a computer simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kates, J.M. ; Center for Res. in the Speech & Hearing Sci., City Univ. of New York, NY, USA

Feedback cancellation in hearing aids involves estimating the feedback signal and subtracting it from the microphone input signal. The feedback-cancellation system described updates the estimated feedback path whenever changes are detected in the feedback behavior. When a change is detected, the normal hearing-aid processing is interrupted, a pseudorandom probe signal is injected into the system, and a set of filter coefficients is adjusted to give an estimate of the feedback path. The hearing aid is then returned to normal operation with the feedback-cancellation filter as part of the system. Two approaches are investigated for computing the filter coefficients: a least-mean square (LMS) adaptive filter and a Wiener filter. Test results are presented for a computer simulation of an in-the-ear (ITE) hearing aid. The simulation results indicate that more than 10 dB of cancellation can be obtained and that the Wiener filter is more effective in the presence of strong interference

Published in:

Signal Processing, IEEE Transactions on  (Volume:39 ,  Issue: 3 )