By Topic

A system identification algorithm using orthogonal functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. Perez ; Dept. of Electr. & Electron. Eng., Tokyo Inst. of Technol., Meguroku, Japan ; S. Tsujii

An adaptive filter (ADF) structure is proposed for applications in which large-order ADFs are required. It is based on modeling the impulse response of the system to be identified as a linear combination of a set of discrete Legendre orthogonal functions. The proposed adaptive filter structure has desirable stability features and a unimodal mean-square error surface as well as a modular structure that permits an easy increase of the filter order without changing the previous stages. Computer simulations in which the proposed structure is used to identify actual acoustic echo path impulse responses show that the Legendre ADF has better convergence performance than the transversal ADF when identifying systems with long impulse response

Published in:

IEEE Transactions on Signal Processing  (Volume:39 ,  Issue: 3 )