By Topic

An efficient buffer insertion algorithm for large networks based on Lagrangian relaxation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
I-Min Liu ; Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX, USA ; Aziz, A. ; Wong, D.F. ; Hai Zhou

We propose a novel buffer insertion algorithm for handling more general networks, whose underlying topology is a directed acyclic graph rather than just a RC tree. The algorithm finds a global buffering which minimizes buffer area while meeting the timing constraints. We use Lagrangian relaxation to translate the timing constraints to a cost in the objective function, and simplify the resulting objective function using the special structure of the problem we are solving. The core of the algorithm is a local refinement procedure, which iteratively computes the optimal buffering for each edge so as to minimize a weighted area and delay objective. The resulting procedure is fast, and takes full advantage of the slack available on noncritical paths

Published in:

Computer Design, 1999. (ICCD '99) International Conference on

Date of Conference:

1999