By Topic

An efficient FFT algorithm based on the discrete sine transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gupta, A. ; Dept. of Electr. Eng., Texas Univ., Arlington, TX, USA ; Rao, K.R.

The authors earlier developed a fast recursive algorithm for the discrete sine transform (see IEEE Trans. Acoust. Speech Signal Process., vol.38, no.3, p.553-7, 1990). This algorithm is used as the basic building block for developing the real valued fast Fourier transform (FFT). It is assumed that the input sequence is real and of length N , an integer power of 2. The N-point discrete Fourier transform (DFT) of a real sequence can be implemented via the real (cos DFT) and imaginary (sin DFT) components. The N-point cos DFT in turn can be developed from N/2-point cos DFT and N/4-point discrete sine transform (DST). Similarly, the N -point sin DFT can be developed from N2-point sin DFT and N/4-point DST. Using this approach, an efficient algorithm (involving real arithmetic only) for N-point DFT is developed

Published in:

Signal Processing, IEEE Transactions on  (Volume:39 ,  Issue: 2 )