By Topic

Task spreading and shrinking on multiprocessor systems and networks of workstations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jacob, Joseph C. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; Soo-Young Lee

In this paper, we describe how our computational model can be used for the problems of processor allocation and task mapping. The intended applications for this model include the dynamic mapping problems of shrinking or spreading an existing mapping when the available pool of processors changes during execution of the problem. The concept of problem edge class and other features of our model are developed to realistically and efficiently support task partitioning and merging for static and dynamic mapping. The model dictates realistic changes in the computation and communication characteristics of a problem when the problem partitioning is modified dynamically. This model forms the basis of our algorithms for shrinking and spreading, and yields realistic results for a variety of problems mapped onto real systems. An emulation program running on a network of workstations under PVM is used to measure execution times for the mapping solutions found by the algorithms. The results indicate that the problem edge class is a crucial consideration for processor allocation and task mapping

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:10 ,  Issue: 10 )