By Topic

Development of an acoustic-phonetic hidden Markov model for continuous speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Ljolje ; AT&T Bell Lab., Murray Hill, NJ, USA ; S. E. Levinson

The techniques used to develop an acoustic-phonetic hidden Markov model, the problems associated with representing the whole acoustic-phonetic structure, the characteristics of the model, and how it performs as a phonetic decoder for recognition of fluent speech are discussed. The continuous variable duration model was trained using 450 sentences of fluent speech, each of which was spoken by a single speaker, and segmented and labeled using a fixed number of phonemes, each of which has a direct correspondence to the states of the matrix. The inherent variability of each phoneme is modeled as the observable random process of the Markov chain, while the phonotactic model of the unobservable phonetic sequence is represented by the state transition matrix of the hidden Markov model. The model assumes that the observed spectral data were generated by a Gaussian source. However, an analysis of the data shows that the spectra for the most of the phonemes are not normally distributed and that an alternative representation would be beneficial

Published in:

IEEE Transactions on Signal Processing  (Volume:39 ,  Issue: 1 )