By Topic

Mining multiple-level association rules in large databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jiawei Han ; Sch. of Comput. Sci., Simon Fraser Univ., Burnaby, BC, Canada ; Yongjian Fu

A top-down progressive deepening method is developed for efficient mining of multiple-level association rules from large transaction databases based on the a priori principle. A group of variant algorithms is proposed based on the ways of sharing intermediate results, with the relative performance tested and analyzed. The enforcement of different interestingness measurements to find more interesting rules, and the relaxation of rule conditions for finding “level-crossing” association rules, are also investigated. The study shows that efficient algorithms can be developed from large databases for the discovery of interesting and strong multiple-level association rules

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:11 ,  Issue: 5 )