Cart (Loading....) | Create Account
Close category search window

Simplified processing for high spectral efficiency wireless communication employing multi-element arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Foschini, G.J. ; Bell Labs. Innovations, Lucent Technol., Holmdel, NJ, USA ; Golden, G.D. ; Valenzuela, R.A. ; Wolniansky, P.W.

We investigate robust wireless communication in high-scattering propagation environments using multi-element antenna arrays (MEAs) at both transmit and receive sites. A simplified, but highly spectrally efficient space-time communication processing method is presented. The user's bit stream is mapped to a vector of independently modulated equal bit-rate signal components that are simultaneously transmitted in the same band. A detection algorithm similar to multiuser detection is employed to detect the signal components in white Gaussian noise (WGN). For a large number of antennas, a more efficient architecture can offer no more than about 40% more capacity than the simple architecture presented. A testbed that is now being completed operates at 1.9 GHz with up to 16 quadrature amplitude modulation (QAM) transmitters and 16 receive antennas. Under ideal operation at 18 dB signal-to-noise ratio (SNR), using 12 transmit antennas and 16 receive antennas (even with uncoded communication), the theoretical spectral efficiency is 36 bit/s/Hz, whereas the Shannon capacity is 71.1 bit/s/Hz. The 36 bits per vector symbol, which corresponds to over 200 billion constellation points, assumes a 5% block error rate (BLER) for 100 vector symbol bursts

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:17 ,  Issue: 11 )

Date of Publication:

Nov 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.