By Topic

Buffer insertion for noise and delay optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. J. Alpert ; IBM Austin Res. Lab., TX, USA ; A. Devgan ; S. T. Quay

Interconnect-driven optimization is an increasingly important step in high-performance design. Algorithms for buffer insertion have been successfully utilized to reduce delay in global interconnect paths; however, existing techniques only optimize delay and timing slack, With the continually increasing ratio of coupling capacitance to total capacitance and the use of aggressive dynamic logic circuit families, noise analysis and avoidance is becoming a major design bottleneck. Hence, timing and noise must be simultaneously optimized to achieve maximum performance. This paper presents comprehensive buffer insertion techniques for noise and delay optimization. Three algorithms are presented, the first for noise avoidance for single sink trees, the second for avoidance for multiple sink trees, and the last for simultaneous noise and delay optimization. We prove the optimality of each algorithm (under various assumptions) and present other theoretical results as well. We ran experiments on a high-performance microprocessor design and show that our approach fixes all noise violations, Our approach was separately verified by a detailed, simulation-based noise analysis tool. Further, we show that optimizing delay alone cannot fix all of the noise violations and that the performance penalty induced by optimizing both delay and noise as opposed to only delay is less than 2%

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:18 ,  Issue: 11 )