Cart (Loading....) | Create Account
Close category search window
 

Low-complexity equalization for π/4 DQPSK signals based on the method of projection onto convex sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kostic, Z. ; AT&T Labs.-Res., Red Bank, NJ, USA

An equalizer adaptation technique for compensation of degradations caused by multipath Rayleigh fading channels to π/4 differential quadrature phase shift keying (DQPSK)-modulated signals is presented. The technique is applied to linear and nonlinear transversal-filter-type equalizers. It is based on the method of projection onto convex sets (POCS), realized in a particular form of the iterative least mean squares (LMS) procedure. The convergence speed of the proposed equalizer coefficient adaptation technique and its computational complexity depend on the newly introduced look-back parameter. Both can be tailored to the characteristics of the channel. For achieving convergence speeds comparable to speeds of recursive least squares (RLS) techniques, the computational load of the presented equalization is of the order of the load required of RLS techniques. However, its algorithmic implementation is notably simpler and its code and storage size requirements are smaller. The technique is numerically stable, and it is suitable for low-power implementations in digital signal processors or custom very large-scale integration (VLSI) circuits. Performed simulations verify good performance of the technique in various channel conditions for 900-MHz multipath fading radio channels

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:48 ,  Issue: 6 )

Date of Publication:

Nov 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.