By Topic

Adaptive target detection in foliage-penetrating SAR images using alpha-stable models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Banerjee, A. ; Dept. of Electr. Eng., Maryland Univ., College Park, MD, USA ; Burlina, P. ; Chellappa, R.

Detecting targets occluded by foliage in foliage-penetrating (FOPEN) ultra-wideband synthetic aperture radar (UWB SAR) images is an important and challenging problem. Given the different nature of target returns in foliage and nonfoliage regions and very low signal-to-clutter ratio in UWB imagery, conventional detection algorithms fail to yield robust target detection results. A new target detection algorithm is proposed that (1) incorporates symmetric alpha-stable (SαS) distributions for accurate clutter modeling, (2) constructs a two-dimensional (2-D) site model for deriving local context, and (3) exploits the site model for region-adaptive target detection. Theoretical and empirical evidence is given to support the use of the SαS model for image segmentation and constant false alarm rate (CFAR) detection. Results of our algorithm on real FOPEN images collected by the Army Research Laboratory are provided

Published in:

Image Processing, IEEE Transactions on  (Volume:8 ,  Issue: 12 )