By Topic

An efficient computation-constrained block-based motion estimation algorithm for low bit rate video coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gallant, M. ; Dept. of Electr. & Comput. Eng., British Columbia Univ., Vancouver, BC, Canada ; Cote, G. ; Kossentini, F.

We present an efficient computation constrained block-based motion vector estimation algorithm for low bit rate video coding that yields good tradeoffs between motion estimation distortion and number of computations. A reliable predictor determines the search origin, localizing the search process. An efficient search pattern exploits structural constraints within the motion field. A flexible cost measure used to terminate the search allows simultaneous control of the motion estimation distortion and the computational cost. Experimental results demonstrate the viability of the proposed algorithm in low bit rate video coding applications. The resulting low bit rate video encoder yields essentially the same levels of rate-distortion performance and subjective quality achieved by the UBC H.263+ video coding reference software. However, the proposed motion estimation algorithm provides substantially higher encoding speed as well as graceful computational degradation capabilities

Published in:

Image Processing, IEEE Transactions on  (Volume:8 ,  Issue: 12 )