By Topic

Image representations using multiscale differential operators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yu-Ping Wang ; Nat. Univ. of Singapore, Singapore

Differential operators have been widely used for multiscale geometric descriptions of images. The efficient computation of these differential operators is always desirable. Moreover, it has not been clear whether such representations are invertible. For certain applications, it is usually required that such representations should be invertible so that one can facilitate the processing of information in the transform domain and then recover it. In this paper, such problems are studied. We consider multiscale differential representations of images using different types of operators such as the directional derivative operators and Laplacian operators. In particular, we provide a general approach to represent images by their multiscale and multidirectional derivative components. For practical implementation, efficient pyramid-like algorithms are derived using the spline technique for both the the composition and reconstruction of images. It is shown that using these representations various meaningful geometric information of images can be extracted at multiple scales; therefore, these representations can be used for edge based image processing purposes. Furthermore, the intrinsic relationships of the proposed representations with the compact wavelet models, and some classical multiscale approaches are also elucidated in the paper

Published in:

IEEE Transactions on Image Processing  (Volume:8 ,  Issue: 12 )