By Topic

Image compression via joint statistical characterization in the wavelet domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. W. Buccigrossi ; Turner Consulting Group, Washington, DC, USA ; E. P. Simoncelli

We develop a probability model for natural images, based on empirical observation of their statistics in the wavelet transform domain. Pairs of wavelet coefficients, corresponding to basis functions at adjacent spatial locations, orientations, and scales, are found to be non-Gaussian in both their marginal and joint statistical properties. Specifically, their marginals are heavy-tailed, and although they are typically decorrelated, their magnitudes are highly correlated. We propose a Markov model that explains these dependencies using a linear predictor for magnitude coupled with both multiplicative and additive uncertainties, and show that it accounts for the statistics of a wide variety of images including photographic images, graphical images, and medical images. In order to directly demonstrate the power of the model, we construct an image coder called EPWIC (embedded predictive wavelet image coder), in which subband coefficients are encoded one bitplane at a time using a nonadaptive arithmetic encoder that utilizes conditional probabilities calculated from the model. Bitplanes are ordered using a greedy algorithm that considers the MSE reduction per encoded bit. The decoder uses the statistical model to predict coefficient values based on the bits it has received. Despite the simplicity of the model, the rate-distortion performance of the coder is roughly comparable to the best image coders in the literature

Published in:

IEEE Transactions on Image Processing  (Volume:8 ,  Issue: 12 )