By Topic

Intelligent control of via formation by photosensitive BCB for MCM-L/D applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tae Seon Kim ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; May, G.S.

Via formation is a critical process sequence in multichip module (MCM) manufacturing, as it greatly impacts yield, density, and reliability. To achieve low-cost manufacturing, modeling, optimization, and control of via formation are crucial. In this paper, a model-based supervisory control algorithm is developed and applied to reduce undesirable behavior resulting from various process disturbances. A series of designed experiments are used to characterize the via formation workcell (which consists of the spin coat, soft bake, expose, develop, cure, and plasma descum unit process steps). The output characteristics considered are film thickness, uniformity, film retention, and via yield. Sequential neural network process models are used for system identification, and hybrid genetic algorithms are applied to synthesize process recipes. Computer simulation results show excellent control of output response shift and drift, resulting in a reduction of process variation. The performance limits of the supervisory control system are investigated based on these simulation results. The control algorithm is verified experimentally, and the results show 82.6, 64.4, and 17.3% improvements in maintaining target via yield, film thickness, and film uniformity, respectively, as compared to open loop operation

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:12 ,  Issue: 4 )