By Topic

The effect of deterministic spatial variations in retrograde well implants on shallow trench isolation for sub-0.18 μm CMOS technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kapila, D. ; Silicon Technol. Dept., Texas Instrum. Inc., Dallas, TX, USA ; Jain, A. ; Nandakumar, M. ; Ashburn, Stan
more authors

The high energy retrograde well implants for sub-0.18 microns CMOS are done at a normal or near normal incidence to minimize the shadowing due to the thick photoresist edges. The endstation geometry in a high energy implanter results in an incident angle variation across the wafer, which causes strong spatial variations in the well profile and can negatively impact device performance. We show that the spatial variations can have significant impact on shallow trench isolation (STI), by causing in a deterministic pattern the failure of STI devices on a wafer. These spatial variations are important and need to be taken into consideration for STI design

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:12 ,  Issue: 4 )