By Topic

Genetic algorithm based identification of nonlinear systems by sparse Volterra filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Leehter Yao ; Dept. of Electr. Eng., Nat. Taipei Univ. of Technol., Taiwan

A parsimonious parameterization scheme is proposed to model the sparse Volterra filter so that the number of Volterra kernels to be estimated is greatly reduced. Representing the Volterra filter using a linear vector equation, the genetic algorithm is applied to search the significant terms among all possible candidate vectors. As the significant terms are detected, the associated Volterra kernels are estimated using the least square error method. The problem to be solved is, in essence, the application of the genetic algorithm to combinatorial optimization. An operator called forced mutation is proposed along with the genetic algorithm to overcome the difficulties usually encountered when applying the genetic algorithm to combinatorial optimization

Published in:

Signal Processing, IEEE Transactions on  (Volume:47 ,  Issue: 12 )