By Topic

High-frequency modeling of current sensors [of IGBT VSI]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
J. Pankau ; Standard Drives Div., Rockwell Autom.-Allen-Bradley Co. Inc., Mequon, WI, USA ; D. Leggate ; D. W. Schlegel ; R. J. Kerkman
more authors

Reflected-wave transient voltages that result from fast insulated gate bipolar transistor voltage-source inverters have received considerable investigation. Modeling, simulation and attenuation of these transients require sophisticated motor and cable models. Most drive suppliers now provide combinations of passive and active solutions to mitigate the adverse effects of overvoltage stress, however, the costs of the passive solutions often exceed the cost of the drive. Another aspect of low-risetime devices, not examined to the extent of the overvoltage problem, is the resulting current from traveling waves. Current sensor fidelity limits the ability of modern drives to detect peak current and can result in current feedback distortion. This paper presents recent research into the response, modeling and construction of Hall-effect current sensors. Models for Hall-effect current sensors are introduced and compared. Experimental and simulation results demonstrate the complexity of the common current sensors employed in modern adjustable-speed drives. A comparison of the sensor response and the model's prediction demonstrates the difficulty associated with accurate current detection. Finally, the paper presents design guidelines to reduce the corrupting influence of high-frequency differential and common-mode currents

Published in:

IEEE Transactions on Industry Applications  (Volume:35 ,  Issue: 6 )