By Topic

Minimizing the required memory bandwidth in VLSI system realizations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wuytack, S. ; Inter-Univ. Micro-Electron. Centre, Leuven, Belgium ; Catthoor, F. ; de Jong, G. ; de Man, H.J.

In this paper, we present the problem of storage bandwidth optimization (SBO) in VLSI system realizations. Our goal is to minimize the required memory bandwidth within the given cycle budget by adding ordering constraints to the flow graph. This allows the subsequent memory allocation and assignment tasks to come up with a cheaper memory architecture with less memories and memory ports. The importance and the effect of SBO is shown on realistic examples both in the video and asynchronous transfer-mode (ATM) domains. We show that it is important to take into account which data is being accessed in parallel, instead of only considering the number of simultaneous memory accesses. Our problem formulation leads to the optimization of a conflict (hyper) graph. For the target domain of ATM, only flat graphs without loops have to be treated. For this subproblem, a prototype tool has been implemented to demonstrate the feasibility of automating this important system design step.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:7 ,  Issue: 4 )