Cart (Loading....) | Create Account
Close category search window

Analytical modeling of set-associative cache behavior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Harper, J.S. ; Dept. of Comput. Sci., Warwick Univ., Coventry, UK ; Kerbyson, D.K. ; Nudd, Graham R.

Cache behavior is complex and inherently unstable, yet it is a critical factor affecting program performance. A method of evaluating cache performance is required, both to give quantitative predictions of miss-ratio and information to guide optimization of cache use. Traditional cache simulation gives accurate predictions of miss-ratio, but little to direct optimization, Also, the simulation time is usually far greater than the program execution time. Several analytical models have been developed, but concentrate mainly on direct-mapped caches, often for specific types of algorithm, or to give qualitative predictions. Novel analytical models of cache phenomena are presented, applicable to numerical codes consisting mostly of array operations in looping constructs. Set-associative caches are considered, through an extensive hierarchy of cache reuse and interference effects, including numerous forms of temporal and spatial locality. Models of each effect are given which, when combined, predict the overall miss-ratio. An advantage is that the models also indicate sources of cache interference. The accuracy of the models is validated through example program fragments. The predicted miss-ratios are compared with simulations and shown typically to be within 15 percent. The evaluation time of the models is shown to be independent of the problem size, generally several orders of magnitude faster than simulation

Published in:

Computers, IEEE Transactions on  (Volume:48 ,  Issue: 10 )

Date of Publication:

Oct 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.