Cart (Loading....) | Create Account
Close category search window
 

Power system dynamic load modeling using adaptive-network-based fuzzy inference system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oonsivilai, A. ; Dept. of Electr. & Comput. Eng., Dalhousie Univ., Halifax, NS, Canada ; El-Hawary, M.E.

The representation of the dynamic characteristics of power system loads is widely used for obtaining power system operations, controls and stability limits and becomes a critical factor in power system dynamic performance. In this paper, the performance of power system dynamic load modeling using adaptive-network-base fuzzy inference system (ANFIS) is compared with traditional architectures. The ANFIS models can represent nonlinear systems performance accurately, and they are promising for dynamic load models. Computer simulations show excellent results using this approach for power system dynamics.

Published in:

Electrical and Computer Engineering, 1999 IEEE Canadian Conference on  (Volume:3 )

Date of Conference:

9-12 May 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.