By Topic

A solution algorithm to the inverse kinematic problem for redundant manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sciavicco, L. ; Dept. of Inf. & Syst., Naples Univ., Italy ; Siciliano, B.

Based on a recently proposed algorithmic solution technique, the inverse kinematic problem for redundant manipulators is solved. The kinematics of the manipulator is appropriately augmented to include mentioned constraints; the result is an efficient, fast, closed-loop algorithm which only makes use of the direct kinematics of the manipulator. Simulation results illustrate the tracking performance for a given trajectory in the Cartesian space, while guaranteeing a collision-free trajectory and/or not violating a mechanical joint limit

Published in:

Robotics and Automation, IEEE Journal of  (Volume:4 ,  Issue: 4 )