By Topic

An FDTD/MoM hybrid technique for modeling complex antennas in the presence of heterogeneous grounds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huang, Z. ; Remote Sensing Lab., Kansas Univ., Lawrence, KS, USA ; Demarest, K. ; Plumb, R.G.

Calculating the current distribution and radiation patterns for ground-penetrating radar antennas is a challenging problem because of the complex interaction between the antenna, the ground, and any buried scatterer. Typically, numerical techniques that are well suited for modeling the antennas themselves are not well suited for modeling the heterogeneous grounds, and visa versa. For example the finite-difference time-domain (FDTD) technique is well suited for modeling fields in heterogeneous media, whereas the method of moments (MoM) is well suited for modeling complex antennas in free space. This paper describes a hybrid technique, based upon the equivalence principle, for calculating an antenna's current distribution radiation pattern when the antenna is located near an air-ground interface. The original problem is decomposed into two coupled equivalent problems: one for the antenna geometry and the other for the ground geometry, with field information passing between them via a rapidly converging iterative procedure. The fields in each region may be modeled using numerical techniques best suited to them. Results for several test cases are presented, using FDTD to model the ground problem and MoM for the antenna problem, that demonstrate the accuracy of this hybrid technique

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:37 ,  Issue: 6 )