By Topic

A new distributed route selection approach for channel establishment in real-time networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Manimaran, G. ; Dept. of Comput. Sci. & Eng., Indian Inst. of Technol., Madras, India ; Rahul, H.S. ; Murthy, C.S.R.

We propose a new distributed route selection approach, called parallel probing, for real-time channel establishment in a point-to-point network. The existing distributed routing algorithms fall into two major categories: preferred neighbor based or flooding based. The preferred neighbor approach offers a better call acceptance rate, whereas the flooding approach is better in terms of call setup time and routing distance. The proposed approach attempts to combine the benefits of both preferred neighbor and flooding approaches in a way to improve all the three performance metrics simultaneously. This is achieved by probing k different paths in parallel, for a channel, by employing different heuristics on each path. Also, the proposed approach uses a notion called intermediate destinations (IDs), which are subset of nodes along the least-cost path between source and destination of a call, in order to reduce the excessive resource reservations while probing for a channel by releasing unused resources between IDs and initiating parallel probes at every ID. Further, it has the flexibility of adapting to different load conditions by its nature of using different heuristics in parallel, and hence, a path found for a channel would have different segments (a segment is a path between two successive IDs), and each of these segments would very well be selected by different heuristics. The effectiveness of the proposed approach has been studied through simulation for well-known network topologies for a wide range of quality-of-service and traffic parameters. The simulation results reveal that the average call acceptance rate offered by the proposed route-selection approach is better than that of both the flooding and preferred neighbor approaches, and the average call setup time and routing distance offered by it are very close to that of the flooding approach

Published in:

Networking, IEEE/ACM Transactions on  (Volume:7 ,  Issue: 5 )