By Topic

Autotuning and controller design for processes with small time delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Majhi, S. ; Sch. of Eng., Sussex Univ., Brighton, UK ; Atherton, D.P.

A set of general expressions is derived from a single asymmetrical relay feedback test for online plant identification. The expressions also remain valid for an odd symmetrical limit cycle test method. Using the expressions, the exact parameters of open-loop stable and unstable first-order plus time delay (FOPDT) and second-order plus time delay (SOPDT) transfer function models may be obtained from simple measurements made on the limit cycle. The approach can also be used to identify transfer functions of integrating processes. Conditions for the existence of limit cycles in unstable FOPDT and SOPDT processes are derived. The design of controllers for these processes is then considered and a simple, but very effective, approach using standard forms with a variable zero is presented. The advantages of using PI-PD control, compared with conventional PID or PI-D control, particularly for unstable and integrating processes is clearly shown. Examples are given to illustrate the value of the proposed general identification method and the improved system performance provided by the proposed controllers

Published in:

Control Theory and Applications, IEE Proceedings -  (Volume:146 ,  Issue: 5 )