By Topic

Cascadability of passband-flattened arrayed waveguide-grating filters in WDM optical networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Otani, T. ; Dept. of Electr. Eng., Columbia Univ., New York, NY, USA ; Antoniades, N. ; Roudas, I. ; Stern, T.E.

The cascadability of passband-flattened arrayed waveguide-grating (AWG) filters is studied using experimental and theoretical transfer functions. The formalism is general and can be used to cascade any type of filter at any channel spacing. For example, modeling indicates that transmission through 100 such AWG (de)multiplexers at 200-GHz channel spacing, assuming 10-Gb/s data streams introduces distortion-induced penalties below the widely acceptable 0.3-dB limit, provided that certain filter design requirements are satisfied. All simulations focus on the filter cascadability and central frequency misalignment effects, and neglect nonlinearities and crosstalk.

Published in:

Photonics Technology Letters, IEEE  (Volume:11 ,  Issue: 11 )