By Topic

Block copolymers as photonic bandgap materials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Y. Fink ; Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA ; A. M. Urbas ; M. G. Bawendi ; J. D. Joannopoulos
more authors

Block copolymers self-assemble into one-, two-, and three-dimensional periodic equilibrium structures, which can exhibit photonic bandgaps. This paper outlines a methodology for producing photonic crystals at optical length scales from block copolymers. Techniques for enhancing the intrinsic dielectric contrast between the block copolymer domains, as well as increasing the characteristic microdomain distances, and controlling defects are presented. To demonstrate the applicability of this methodology, a self-assembled one-dimensional periodic structure has been fabricated that reflects visible light. The wealth of structures into which block copolymers can assemble and the multiple degrees of freedom that can be built into these materials on the molecular level offer a large parameter space for tailoring new types of photonic crystals at optical length scales

Published in:

Journal of Lightwave Technology  (Volume:17 ,  Issue: 11 )