By Topic

Sufficient condition for convergence of a relaxation algorithm in actual single-layer neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zurada, J.M. ; Dept. of Electr. Eng., Louisville Univ., KY, USA ; Shen, W.

Application of the contraction mapping theorem to single-layer feedback neural networks of a gradient-type is discussed. The sufficient condition for stability of a relaxation algorithm in actual continuous-time networks is derived and illustrated with an example. Results showing the stability of a numerical solution obtained with the relaxation algorithm are presented

Published in:

Neural Networks, IEEE Transactions on  (Volume:1 ,  Issue: 4 )