By Topic

Graph partitioning using annealed neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Van den Bout, D.E. ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA ; Miller, T.K., III

A new algorithm, mean field annealing (MFA), is applied to the graph-partitioning problem. The MFA algorithm combines characteristics of the simulated-annealing algorithm and the Hopfield neural network. MFA exhibits the rapid convergence of the neural network while preserving the solution quality afforded by simulated annealing (SA). The rate of convergence of MFA on graph bipartitioning problems is 10-100 times that of SA, with nearly equal quality of solutions. A new modification to mean-field annealing is also presented which supports partitioning graphs into three or more bins, a problem which has previously shown resistance to solution by neural networks. The temperature-behavior of MFA during graph partitioning is analyzed approximately and shown to possess a critical temperature at which most of the optimization occurs. This temperature is analogous to the gain of the neurons in a neural network and can be used to tune such networks for better performance. The value of the repulsion penalty needed to force MFA (or a neural network) to divide a graph into equal-sized pieces is also estimated

Published in:

Neural Networks, IEEE Transactions on  (Volume:1 ,  Issue: 2 )