By Topic

Probabilistic neural networks and the polynomial Adaline as complementary techniques for classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Specht, Donald F. ; Lockheed Missiles & Space Co. Inc., Palo Alto, CA, USA

Two methods for classification based on the Bayes strategy and nonparametric estimators for probability density functions are reviewed. The two methods are named the probabilistic neural network (PNN) and the polynomial Adaline. Both methods involve one-pass learning algorithms that can be implemented directly in parallel neural network architectures. The performances of the two methods are compared with multipass backpropagation networks, and relative advantages and disadvantages are discussed. PNN and the polynomial Adaline are complementary techniques because they implement the same decision boundaries but have different advantages for applications. PNN is easy to use and is extremely fast for moderate-sized databases. For very large databases and for mature applications in which classification speed is more important than training speed, the polynomial equivalent can be found

Published in:

Neural Networks, IEEE Transactions on  (Volume:1 ,  Issue: 1 )