Cart (Loading....) | Create Account
Close category search window
 

An efficient modular spare allocation scheme and its application to fault tolerant binary hypercubes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alam, M.S. ; Dept. of Comput. Sci., Pittsburth Univ., PA, USA ; Melhem, R.G.

Consideration is given to fault tolerant systems that are built from modules called fault tolerant basic blocks (FTBBs), where each module contains some primary nodes and some spare nodes. Full spare utilization is achieved when each spare within an FTBB can replace any other primary or spare node in that FTBB. This, however, may be prohibitively expensive for larger FTBBs. Therefore, it is shown that for a given hardware overhead more reliable systems can be designed using bigger FTBBs without full spare utilization than using smaller FTBBs with full spare utilization. Sufficient conditions for maximizing the reliability of a spare allocation strategy in an FTBB for a given hardware overhead are presented. The proposed spare allocation strategy is applied to two fault tolerant reconfiguration schemes for binary hypercubes. One scheme uses hardware switches to replace a faulty node, and the other scheme uses fault tolerant routing to bypass faulty nodes in the system and deliver messages to the destination node

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:2 ,  Issue: 1 )

Date of Publication:

Jan 1991

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.