Cart (Loading....) | Create Account
Close category search window
 

Properties and performance of folded hypercubes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
El-Amawy, A. ; Dept. of Electr. & Comput. Eng., Louisiana State Univ., Baton Rouge, LA, USA ; Latifi, S.

A new hypercube-type structure, the folded hypercube (FHC), which is basically a standard hypercube with some extra links established between its nodes, is proposed and analyzed. The hardware overhead is almost 1/n, n being the dimensionality of the hypercube, which is negligible for large n. For this new design, optimal routing algorithms are developed and proven to be remarkably more efficient than those of the conventional n-cube. For one-to-one communication, each node can reach any other node in the network in at most [n/2] hops (each hop corresponds to the traversal of a single link), as opposed to n hops in the standard hypercube. One-to-all communication (broadcasting) can also be performed in only [n/2] steps, yielding a 50% improvement in broadcasting time over that of the standard hypercube. All routing algorithms are simple and easy to implement. Correctness proofs for the algorithms are given. For the proposed architecture, communication parameters such as average distance, message traffic density, and communication time delay are derived. In addition, some fault tolerance capabilities of this architecture are quantified and compared to those of the standard cube. It is shown that this structure offers substantial improvement over existing hypercube-type networks in terms of the above-mentioned network parameters

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:2 ,  Issue: 1 )

Date of Publication:

Jan 1991

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.