By Topic

Experimental application-driven architecture analysis of an SIMD/MIMD parallel processing system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bronson, E. ; Purdue Univ., West Lafayette, IN, USA ; Casavant, T.L. ; Jamieson, L.H.

An experimental analysis of the architecture of an SIMD/MIMD parallel processing system is presented. Detailed implementations of parallel fast Fourier transform (FFT) programs were used to examine the performance of the prototype of the PASM (Partitionable SIMD/MIMD) parallel processing system. Detailed execution-time measurements using specialized timing hardware were made for the complete FFT and for components of SIMD, MIMD, and barrier-synchronized MIMD implementations. The component measurements isolated the effects of floating-point arithmetic operations, interconnection network transfer operations, and program control overhead. The measurements allow an accurate extrapolation of the execution time, speedup, and efficiency of the MIMD, SIMD, and barrier-synchronized MIMD programs to a full 1024-processor PASM system. This constitutes one of the first results of this kind, in which controlled experiments on fixed hardware were used to make comparisons of these fundamental modes of computing. Overall, the experimental results demonstrate the value of mixed-mode SIMD/MIMD computing and its suitability for computational intensive algorithms such as the FET

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:1 ,  Issue: 2 )