By Topic

Iterative instructions in the Manchester Dataflow Computer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bohm, A.P.W. ; Dept. of Comput. Sci., Manchester Univ., UK ; Gurd, J.R.

The authors investigate the nature and extent of the benefits and adverse effects of iterative instructions in the prototype Manchester Dataflow Computer. Iterative instructions are shown to be highly beneficial in terms of the number of instructions executed and the number of tokens transferred between modules during a program run. This benefit is apparent at hardware level, giving significantly reduced program execution times. However, the full benefits are not realized due to interference between lengthy iterative instructions. It is suggested that restructuring of buffers and the function unit array in the prototype hardware configuration can reduce this interference. Other possibilities for improvement are suggested. For example, the slowdown effect observed in hardware speedup curves could be tackled by treating iterative instructions differently from fine-grain instructions. An alternative structure for the processing element in which certain function units are specialized for executing iterative instructions is being investigated in this connection

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:1 ,  Issue: 2 )