Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Parallel simulated annealing algorithms for cell placement on hypercube multiprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Banerjee, P. ; Dept. of Electr. Eng., Illinois Univ., Urbana, IL, USA ; Jones, M.H. ; Sargent, J.S.

A discussion is presented of two ways of mapping the cells in a two-dimensional area of a chip onto processors in an n-dimensional hypercube such that both small and large cell moves can be applied. Two types of move are allowed: cell exchanges and cell displacements. The computation of the cost function in parallel among all the processors in the hypercube is described, along with a distributed data structure that needs to be stored in the hypercube to support such a parallel cost evaluation. A novel tree broadcasting strategy is presented for the hypercube that is used extensively in the algorithm for updating cell locations in the parallel environment. A dynamic parallel annealing schedule is proposed that estimates the errors due to interacting parallel moves and adapts the rate of synchronization automatically. Two novel approaches in controlling error in parallel algorithms are described: heuristic cell coloring and adaptive sequence control. The performance on an Intel iPSC-2/D4/MX hypercube is reported

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:1 ,  Issue: 1 )