By Topic

Mapping nested loop algorithms into multidimensional systolic arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lee, P.-Z. ; Courant Inst. of Math. Sci., New York Univ., NY, USA ; Kedem, Z.M.

Consideration is given to transforming depth p-nested for loop algorithms into q-dimensional systolic VLSI arrays where 1⩽qp-1. Previously, there existed complete characterizations of correct transformation only for the cases where q=p-1 or q=1. This gap is filled by giving formal necessary and sufficient conditions for correct transformation of a p-nested loop algorithm into a q-dimensional systolic array for any q, 1⩽qp-1. Practical methods are presented. The techniques developed are applied to the automatic design of special purpose and programmable systolic arrays. The results also contribute toward automatic compilation onto more general purpose programmable arrays. Synthesis of linear and planar systolic array implementations for a three-dimensional cube-graph algorithm and a reindexed Warshall-Floyd path-finding algorithm are used to illustrate the method

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:1 ,  Issue: 1 )