By Topic

Neuronal current distribution imaging using magnetic resonance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kamei, H. ; Dept. of Biomed. Eng., Tokyo Univ., Japan ; Iramina, K. ; Yoshikawa, K. ; Ueno, S.

A new functional magnetic resonance imaging (fMRI) technique to visualize the distribution of neuronal currents in the human brain was developed Measurements of the internal magnetic field deformation caused by an electric current dipole in a phantom were performed using a method based on the microscopic magnetic resonance imaging technique. The minimal value of the current dipole moment detected by the present method was determined to be 90 nAm. The technique was applied to obtain maps of human brain activity by using motor and sensory stimulus paradigms. Measurements were made with an EPI sequence at 1.5 T. Intensity changes, resulting from causes other than neuronal currents, were eliminated by editing functional images obtained with field gradients of different polarities. MRI mapping of the neuronal currents in the brain during middle finger and thumb tapping was clearly obtained

Published in:

Magnetics, IEEE Transactions on  (Volume:35 ,  Issue: 5 )