By Topic

Line-based face recognition under varying pose

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
de Vel, O. ; Inf. Technol. Div., Defence Sci. & Technol. Organ., Salisbury, SA, Australia ; Aeberhard, S.

Much research in human face recognition involves fronto-parallel face images, constrained rotations in and out of the plane, and operates under strict imaging conditions such as controlled illumination and limited facial expressions. Face recognition using multiple views in the viewing sphere is a more difficult task since face rotations out of the imaging plane can introduce occlusion of facial structures. In this paper, we propose a novel image-based face recognition algorithm that uses a set of random rectilinear line segments of 2D face image views as the underlying image representation, together with a nearest-neighbor classifier as the line matching scheme. The combination of 1D line segments exploits the inherent coherence in one or more 2D face image views in the viewing sphere. The algorithm achieves high generalization recognition rates for rotations both in and out of the plane, is robust to scaling, and is computationally efficient. Results show that the classification accuracy of the algorithm is superior compared with benchmark algorithms and is able to recognize test views in quasi-real-time

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:21 ,  Issue: 10 )