We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Temporal relaxation of plasma electrons acted upon by direct current electric and magnetic fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Loffhagen, D. ; Inst. fur Niedertemp.-Plasmaphys., Greifswald, Germany ; Winkler, R.

On the basis of the time-dependent electron Boltzmann equation the temporal relaxation of the electrons in the presence of electric and magnetic fields in weakly ionized, collision dominated plasmas has been studied. The relaxation process is treated by using a strict time-dependent two-term approximation of the velocity distribution function expansion in spherical harmonics. A new technique for solving the time-dependent electron kinetic equation in this two-term approximation for arbitrary angles between the electric and magnetic fields has been developed and the main aspects of the efficient solution method are presented. Using this new approach and starting from steady-state plasmas under the action of time-independent electric fields only, the impact of superimposed DC magnetic fields on the electron relaxation is analyzed with regard to the control of a neon plasma. The investigations reveal an important effect of the magnetic field on the temporal relaxation process. In particular, it has been found that the relaxation time of the electron component with respect to the establishment of steady-state can be enlarged by some orders of magnitude when increasing the magnetic field strength

Published in:

Plasma Science, IEEE Transactions on  (Volume:27 ,  Issue: 5 )