Cart (Loading....) | Create Account
Close category search window
 

Inclusion of interbar currents in a network-field coupled time-stepping finite-element model of skewed-rotor induction motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ho, S.L. ; Dept. of Electr. Eng., Hong Kong Polytech., Kowloon, Hong Kong ; Li, H.L. ; Fu, W.N.

In order to include the interbar currents of skewed-rotor inductor motors in finite-element analysis, a three-dimensional (3-D) model is usually necessary. In this paper a two-dimensional multislice time-stepping finite element method of skewed-rotor induction motors is presented to solve such complicated 3-D problems. It is shown that the network of the rotor cage is coupled to finite-element equations so that the interbar currents in the rotor can be taken into account. By arranging the unknowns and mesh-current equations ingeniously, the resultant coefficient matrix of the global system equations are made symmetrical. Compared with 3-D finite-element methods, the computation time for solving field equations with the proposed method is significantly shorter. The model can be used to estimate the high-order harmonic stray losses in induction motors. A comparison between computed and tested results is also given

Published in:

Magnetics, IEEE Transactions on  (Volume:35 ,  Issue: 5 )

Date of Publication:

Sep 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.