By Topic

Asymptotically efficient estimation of prior probabilities in multiclass finite mixtures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. R. Dattatreya ; Texas Univ., Richardson, TX, USA ; L. N. Kanal

A prior probability estimator, a candidate for asymptotic efficiency, from within the class of recursive estimators proposed by the authors (1990) is synthesized. The authors prove asymptotic efficiency and convergence with probability one by involving a stochastic approximation theorem. The estimator can be implemented in practice for continuous, discrete, and mixed class conditional density functions, although continuous and mixed densities generally require repeated evaluation of expectations of certain functions through numerical techniques. Results of a simulation. experiment with discrete densities are included. Variations of the estimator, for computational simplicity, are discussed.

Published in:

IEEE Transactions on Information Theory  (Volume:37 ,  Issue: 3 )