By Topic

An extended banker's algorithm for deadlock avoidance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
S. -D. Lang ; Sch. of Comput. Sci., Univ. of Central Florida, Orlando, FL, USA

We describe a natural extension of the banker's algorithm (D.W. Dijkstra, 1968) for deadlock avoidance in operating systems. Representing the control flow of each process as a rooted tree of nodes corresponding to resource requests and releases, we propose a quadratic-time algorithm which decomposes each flow graph into a nested family of regions, such that all allocated resources are released before the control leaves a region. Also, information on the maximum resource claims for each of the regions can be extracted prior to process execution. By inserting operating system calls when entering a new region for each process at runtime, and applying the original banker's algorithm for deadlock avoidance, this method has the potential to achieve better resource utilization because information on the “localized approximate maximum claims” is used for testing system safety

Published in:

IEEE Transactions on Software Engineering  (Volume:25 ,  Issue: 3 )