By Topic

Characterization of deadlocks in k-ary n-cube networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. M. Pinkston ; Dept. of Electr. Eng. Syst., Univ. of Southern California, Los Angeles, CA, USA ; S. Warnakulasuriya

A spate of deadlock avoidance-based and deadlock recovery-based routing algorithms have been proposed in recent years without full understanding of the likelihood and characteristics of actual deadlocks in interconnection networks. This work models the interrelationships between routing freedom, message blocking, correlated resource dependencies, and deadlock formation. It is empirically shown that increasing routing freedom, as achieved by allowing unrestricted routing over multiple physical and virtual channels, reduces the probability of deadlocks and the likelihood of other types of correlated message blocking that can degrade performance. Moreover, when true fully adaptive routing is used in k-ary n-cube networks with two or more virtual channels (wormhole OF virtual cut-through switched), it is empirically shown that deadlocks are virtually eliminated in networks with n⩾2. These results indicate that deadlocks are very infrequent when the network and routing algorithm inherently provide sufficient routing freedom, thus increasing the viability of deadlock recovery routing strategies

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:10 ,  Issue: 9 )